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ABSTRACT

When evolving software product lines, new features are added
over time and existing features are revised. Engineers also decide
to merge different features or split features in other cases. Such
refactoring tasks are difficult when using manually maintained
feature-to-code mappings. Intensional version control systems such
as ECCO overcome this issue with automatically computed feature-
to-code mappings. Furthermore, they allow creating variants that
have not been explicitly committed before. However, such systems
are still rarely used compared to extensional version control sys-
tems like Git, which keep track of the evolution history by assigning
revisions to states of a system. This paper presents an approach
combining both extensional and intensional version control sys-
tems, which relies on the extensional version control system Git
to store versions. Developers selectively tag existing versions to
describe the evolution at the level of features. Our approach then
automatically replays the evolution history to create a repository
of the intensional variation control system ECCO. The approach
contributes to research on refactoring features of existing product
lines and migrating existing systems to product lines. We provide
an initial evaluation of the approach regarding correctness and
performance based on an existing system.
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« Software and its engineering — Software product lines; Soft-
ware configuration management and version control systems;
Software maintenance tools.
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1 INTRODUCTION

Product lines are subject to continuous evolution [13, 23]. Features
are added, removed, and renamed over time, and they are split
or merged to accommodate new or changing requirements [3].
These continuous changes result in many revisions of software
artifacts [7]. Revisions are the result of evolution in time, e.g., when
fixing a bug. They denote sequential versions, representing a snap-
shot of the evolution of a software feature. Variants on the other
hand stem from evolution in space [2], e.g., when adding a new
feature. They denote versions of software artifacts that need to exist
concurrently. In annotation-based product lines engineers manually
maintain feature-to-code mappings. Maintaining code fragments
guarded by annotations encoding the mappings is hard [15, 21]
and it is particularly challenging to carry out changes to features
while at the same time keeping the mappings consistent [13, 22, 28].
For instance, merging features at a certain point is difficult when
done manually, since features are mapped to diverse and complex
artifacts.

Existing version control systems pursue two versioning strate-
gies [7, 18], which can be used to manage evolving product lines:
Extensional versioning assumes that all existing versions are explic-
itly enumerated. It then allows to retrieve the versions that have
been created before. Git or Subversion are examples of such tools,
which keep track of changes by assigning revisions to states of
a system over time. However, evolution is rarely just a linear se-
quence of steps and such tools thus provide branching mechanisms
for dealing with variants. For instance, short-term branches are
used to develop new features in isolation. Once a new feature is
finished, it is merged with the original artifact and the branch is
no longer used. However, at this point the new feature becomes
tangled with the rest of the artifacts and its location is not man-
aged explicitly [22]. The purpose of long-term branches, on the
other hand, is to create clones of existing artifacts, based on which
variants of the system can then be created. Nonetheless, long-term
branches quickly lead to maintenance problems as updates and
fixes need to be propagated to all variants [25]. Intensional ver-
sioning aims at overcoming these limitations with mechanisms for
managing fine-grained variants [18], thereby avoiding branches for
features of variants. Furthermore, they allow creating versions that
have not been explicitly enumerated and committed before. Such
tools use concepts like features, configurations, and construction
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Figure 1: The original (left) and the refactored (right) feature model of MiniPaint.

rules to compose arbitrary versions [3, 8]. Most importantly, inten-
sional version control systems automatically compute and update
mappings between features and artifacts when engineers commit
features to a repository. Examples of such tools are ECCO [16] and
SuperMod [18].

The current state of the practice is to use extensional tools such
as Git combined with annotation-based variability mechanisms
such as preprocessors to manage both revisions and variants of
software systems [22, 23, 26]. Despite its popularity, this approach
lacks the ability of creating new variants based on arbitrary feature
combinations [2]. Furthermore, it requires developers to manually
edit feature annotations [22], which could be automated by vari-
ation control systems as pointed out. This paper thus combines
extensional and intensional version control to benefit from both
kinds of approaches for the purpose of refactoring product lines or
migrating systems to product lines.

In particular, we claim the following contributions: (i) we present
an approach based on lightweight feature tags to selectively anno-
tate existing version histories. Our tool-supported approach then
analyzes and replays the tagged version history to create a repos-
itory of a variation control system, which allows managing both
revisions and variants. (ii) We provide an implementation, which
uses the version control system Git to manage snapshots of the
evolution and the variation control system ECCO [10, 16, 17] to
manage both revisions and variants. (iii) We evaluate our approach
regarding correctness and performance by applying it to the Mag-
icMirror system and its evolution history. (iv) Finally, we discuss
experiences and lessons learned.

2 MOTIVATING EXAMPLE

As arunning example, let us consider the original and the refactored
feature model of the simple MiniPaint application (cf. Figure 1) for
painting graphical objects. When evolving MiniPaint an engineer
may consider refactoring the model. For example, drawing a rec-
tangle is similar to drawing a diamond or a square, thus, engineers
might merge these features to a single feature Rectangle, thereby
reducing complexity. Moreover, engineers might decide to rename
the feature Round, which is responsible for drawing circles. Fur-
thermore, the feature Import that handles the import of different
file types may get too complex. Hence, engineers may propose to
split it into multiple features to reduce feature complexity and to
offer additional choices to customers.

The example highlights that evolving a software product line will
require adding new features and revising existing ones over time,
thereby providing more functionality or changing feature behavior,
as recently shown in empirical studies on the evolution of highly

configurable systems [22, 23]. Furthermore, there might be a point
in time when different features provide very similar functionality
and it makes sense to merge them. The initial meaning of features
may even evolve over time, making it necessary to refactor the
originally anticipated model [3].

Such refactoring tasks are challenging when using manually
maintained preprocessor annotations to manage feature-to-code
mappings. For instance, developers will have to go through the code
base and change all affected annotations. This is both tedious and
error-prone, as shown by Michelon et al. [22, 23], who mined fea-
tures from existing Git repositories. Variation control systems [18]
overcome this issue by automatically computing feature-to-code
mappings. For instance, ECCO computes feature-to-code mappings
by determining feature-level differences between different artifact
versions in the code base [10, 17]. This allows to refactor product
lines by replaying an evolution history (e.g., from a Git repository)
and committing the different versions with the desired features to
a variation control system.

3 THE RESERVE APPROACH

We present the ReSeRVe (Refactoring by Selectively Replaying
Versions) approach that integrates both extensional and intensional
version control to utilize the benefits of both kinds of version con-
trol systems. Our approach comprises five elements (cf. Figure 2):
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Figure 2: Overview of the ReSeRVe approach.
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It relies on manual Feature Tagging to annotate existing version
histories and/or automated Feature Mining, such as shown by [23].
ReSeRVe then automatically replays the Annotated Evolution His-
tory and commits the feature-level changes to a Variation Control
System, thereby creating a repository which manages both revisions
and variants at the level of features.

Annotated Version History. The input for our automated approach
is an annotated version history. We do not make assumptions on
how the evolution snapshots of existing systems are managed, as
long as we can re-create (or check out) earlier system versions,
which is the case for tools like Git or Subversion. The evolution
history can be annotated manually by feature tagging, i.e., describ-
ing existing commits with feature-level changes. Alternatively, an
existing repository can be analyzed and annotated automatically
using a feature mining approach, as shown in related work [22, 23].
The mined features and their evolution history can then be used as
additional input for manual tagging.

Feature Tagging. In this manual process, an engineer annotates
versions, i.e., commits, of the evolution history. The annotations
encode information about features and the refactoring operations
applied on these features, i.e., they describe when features were first
added, updated, or deleted. Feature operations also include merging
multiple features into a single one, splitting a single feature into
multiple features, or renaming a feature, as already discussed in
the motivating example. Manual tagging is straightforward with
existing tools such as Atlassian’s SourceTree, gitk, or TortoiseSVN,
which provide a graphical user interfaces besides a command line
interface to tag the version history.

Feature Mining. Feature annotations based on preprocessor direc-
tives are a common variability mechanism used in product lines and
highly-configurable software systems [26]. However, it is challeng-
ing to understand, maintain, and evolve code fragments guarded by
#ifdef directives encoding the feature-to-code mappings [15, 21].
Automated approaches have been developed to mine and analyze
features and their life cycle from existing code repositories [22, 23].
They can be used to support feature tagging by analyzing system
evolution at the level of features, e.g., by showing when features
were first introduced, or when they were revised.

Variation Control System. Several variation control systems with
different capabilities have been proposed [18]. When working with
a variation control system, a developer uses a feature-oriented
checkout operation to create a variant and then implements new
features or makes changes to existing features. The developer then
uses a feature-oriented commit operation to submit changes to
the repository by providing information which features have been
added or changed. The system determines the changes in the im-
plementation artifacts and updates the mappings of changed im-
plementation artifacts to new features and feature revisions. If the
committed code artifacts affect already existing features, a new
feature revision is created automatically [13, 18].

Selective Replaying of Versions. This automated step analyzes the
version history annotated with information about feature changes
to generate a repository of a variation control system. This is
achieved by selectively replaying the evolution history and us-
ing the annotations to incrementally generate a new repository
by automatically creating and executing commits to a variation
control system.
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Figure 3: ReSeRVe tool architecture.

4 IMPLEMENTATION

The tool architecture of ReSeRVe is depicted in Figure 3. It realizes
the general approach shown in Figure 2. To limit the scope of
this paper, our current implementation and evaluation focuses on
manual tagging, while we will complement the approach with
automated feature mining in future work.

4.1 Capabilities

Our implementation of ReSeRVe relies on selectively annotating a
Git history via feature-level tags and then generating a repository
of the variation control system ECCO [16], based on the provided
tags. Annotated tags have both a name and a message defining the
operation for feature refactoring. An engineer describes changes at
the level of features by adding or removing tags, either via the Git
command line interface or by using a Git GUI client. The tags are
stored in the Git repository. While Git does not provide support
to refactor product lines at the level of features, Git tags provide a
simple mechanism to annotate the evolution history by specifying
feature operations. This also ensures traceability, as, for example,
adding a new feature is linked to a commit and a tag. Further, by
inspecting the Git history, an engineer can quickly spot when a
feature was added, revised, renamed, or deleted.

Our tool then performs the following three steps:

Step 1 — Parsing a tagged Git history and generating a feature
model. This step filters out tags containing unsupported refactoring
operations and performs basic consistency checks on the found
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features. For example, it is important to prevent merging a feature
that does not yet exist at a certain point in time.

Step 2 — Checking out relevant commits. This step uses the gener-
ated feature model to re-parse the Git history. The tool computes
the feature versions and selects commits with relevant tags for
checking them out from the repository. The tool also computes the
feature configurations of each version based on the feature model.

Step 3 — Committing the checked-out versions. In this step, the
tool incrementally commits all the checked-out versions using their
respective feature configurations to the ECCO repository. This is
done for every checked-out commit.

4.2 Tagging Support

Our tool supports six operations for defining feature-level changes,
which can be added to tags when analyzing a version history:

Add. This operation indicates that a feature has been first intro-
duced in a particular commit. This can be seen as the entry point
for managing a new feature. If a feature already exists, it is consid-
ered a revision and its version number is increased. As shown by
Michelon et al. [22] commits frequently concern existing features
but often also affect new ones.

Update. This operation allows to explicitly revise an already
existing feature, similar to adding an existing one. The operation
only succeeds if the feature already exists.

Rename. This operation can be used if a feature name is no longer
considered appropriate in the domain of the product line. The new
feature name must be unique.

Merge. This operation allows combining multiple features, e.g.,
if they are highly dependent on each other or provide very similar
functionality. This operation replaces all occurrences of the features
and uses the new name of the feature from the commit of the merge
onwards.

Split. This operation divides a single feature into multiple features
sharing the same base. This is useful, for instance, if a feature gets
too complex or provides too many capabilities. Essentially, the
feature to be split is replaced with all its subfeatures. Obviously, this
operation requires additional commits tagged with the subfeatures
in the subsequent version history such that the variation control
system can distinguish them as we will discuss later.

Delete. This operation removes a feature from being tracked,
meaning that it will not appear in the variation control system
and thus can no longer be used to create variants. When deleting
a feature the affected commits in the version history are either
associated with the base feature or with other features. Specifically,
if no features are left in a tag, the base feature will be updated,
otherwise the remaining features will be mapped to the code.

Figure 4 shows the Git history and the feature evolution graph
for our running example. It illustrates how the change operations
like merge, rename and split cause features to evolve. When a feature
evolves, it is not present anymore in the final feature model. For
instance, the feature Rect is added in commit #1. However, this
feature is not present in the final commit #6, as it evolved into
Square and Diamond. This also means that the Rect feature will
not be available in the generated ECCO repository. However, the
original tag message is not removed, since it describes the original
introduction of the features and the user is not assumed to manually
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rename Round, Sphere Spheres (6)

Figure 4: MiniPaint commits with feature-level refactorings.
The example also shows the simple syntax used for feature

tagging.

replace feature Rect with its subfeatures in the annotated version
history.

4.3 Updating Feature-to-Code Mappings

Computing the feature-to-code mappings automatically is essential
for our approach. The variation control system ECCO! stores the
entire implementation of the system in the form of artifact trees and
maintains mappings between features and the artifacts. Presence
conditions determine whether the artifacts will be included in a spe-
cific product configuration. A presence condition is a propositional
logic formula with feature revisions as literals. ECCO supports the
evolution of features over time by considering feature revisions
in the computed traces [18]. Our approach uses ECCO’s diffing
capabilities to automatically update the feature-to-code mappings.
ECCO stores implementation artifacts as a generic tree structure.
Nodes of the tree are labeled with presence conditions. When com-
mitting a new configuration, the tree is updated by automatically
computing the presence conditions of the affected artifacts. The
tool computes the features’ versions and the configurations of each
commit and selects commits with relevant tags for checking them
out from the repository. In Step 3, the tool incrementally commits
all the checked-out versions using their feature configurations to
the ECCO repository, thereby automatically updating the feature-
to-code mappings.

Features are mapped to arbitrary (parts of) artifacts such as lines
of code, statements in source code, model elements, or parts of
documents. Features vary in terms of size and scattering. The size
represents the number of artifact elements belonging to a particular
feature. Features are often realized in multiple artifact locations.
Cross-cutting features, in particular, are scattered and realized in
multiple contiguous locations.

The user is expected to only tag the actually affected features
when annotating relevant commits. When checking out a specific
tag using Git, the entire code of all features at this particular commit
is included. Therefore, when generating the feature configuration
for ECCO the other features are also included automatically to
prevent committing a variant with missing features, as this would

https://github.com/jku-isse/ecco



Refactoring Product Lines by Replaying Version Histories

VAMOS 22, February 23-25, 2022, Florence, Italy

Table 1: Evaluation scenarios.

#Tagged Commits #Features

Scenario Features and their Highest Revisions (#Single Feature Tags) (#Variants)
S1  Many tags, many features Base.19, Traffic.9, Weather.11, 118n.2, Settings.2, Rss.5 34 (25) 6 (31)
S2  Many tags, combined two dependent features Base.19, Combined.15, 118n.2, Settings.2, Rss.5 35 (25) 5 (15)
S3  Many tags, combined two independent features  Base.19, Combined.14, Weather.11, 118n.2, Settings.2 35 (25) 5 (15)
S4  Few tags, many features Base.5, Traffic.4, Weather.4, 118n.2, Settings.1, Rss.1 6(0) 6 (31)
S5  Highest tags, many features Base.24, Traffic.9, Weather.17, 118n.2, Settings.2, Rss.5 48 (39) 6 (31)
S6  Many tags, few features Base.19, V1.16, V2.9 36 (25) 3(3)
S7  Few tags, few features Base.6, V1.7, V2.3 8(0) 3(3)

result in inconsistent feature-to-code mappings. Therefore, when
synthesizing a feature configuration for committing to ECCO, we
replace the evolved features with the top-level features’ last revi-
sion. For example, in the latest version of MiniPaint (commit #6
in Figure 4) the top-level features are Base, Square, Diamond, and
Sphere. The feature configuration for commit #2 on the other hand
is Base.1, Square.1, Diamond.1, and Sphere.1, since the features Rect,
Circle, and Oval no longer exist.

5 EVALUATION

Refactoring a product line by tagging earlier versions of an evo-
lution history is an ambitious goal and has not been investigated
to date as far as we know. The goal of our preliminary evalua-
tion is thus to assess if the approach is feasible when applied to a
real-world system. In particular, we investigated the following two
research questions:

RQ1 - Correctness. To what extent can the mappings of fea-
tures to code artifacts be computed correctly? We checked the
correctness of our approach by experimenting with different refac-
toring scenarios of the MagicMirror application, covering important
combinations of the numbers of features and the numbers of tags.
We replayed the annotated version histories of the different scenar-
ios and used our ReSeRVe tool to generate the ECCO repositories.
We then composed all possible variants and checked their correct-
ness.

RQ2 - Performance. Can the approach be used in realistic
workflows? We measured the performance of each scenario to
compute the time needed to generate the feature evolution graph
and the ECCO repository for each scenario.

5.1 Data Set

As our dataset, we used the back-end implementation of the Mag-
icMirror application. The system provides capabilities to provide
information about the current traffic situation, the current weather
and a forecast, a feature to read RSS-feeds from any given source,
as well as customization features for the front-end application, in-
cluding internationalization. We selected the back-end components
written in Java for our study. MagicMirror was chosen, because
the available plugins for the ECCO variation control system allow
parsing its key artifact types, namely Java source code and XML
files. The system consists of about 2100 lines of Java code in almost
50 files. Additionally, it also consists of XML files for the project
configuration as well as JSON files used for static resources. Mag-
icMirror is modularized with well-managed dependencies between

the different modules and can be configured using the SpringBoot
framework. For instance, the base of the system can be started with-
out any of the optional modules. Furthermore, one author of the
paper is an expert of the system, which facilitated the inspection
and analysis of the different automatically composed variants. The
evolution history of the MagicMirror version used in this paper
contains 100 commits managed in a Git repository. However, the
development of the application was already finished before the
work on ReSeRVe started, and the developer did not design the
system in a feature-oriented fashion.

5.2 Research Method

Regarding RQ1, we performed the following steps: First, we tagged
the MagicMirror repository with different levels of granularity. We
then used ReSeRVe to replay the annotated version histories and
generated ECCO repositories. Finally, we assessed the correctness
of the composed configurations, including both intensional and
extensional variants. Regarding RQ2, we measured the execution
time for creating the feature evolution graph and the creation of
the ECCO repository for each scenario. The independent variables,
i.e., the characteristics changed to produce different conditions are
the number and thus granularity of features as well as the number
of tags, i.e., the results for RQ1 and RQ2 depend on the number
of tags applied to the history and the granularity of the features.
The dependent variables, i.e., the characteristics measured in the
experiment, are the level of correctness and the performance of
replaying the annotated version histories.

Even when tagging on feature-level the number of used features
and the number of tags used to explain changes can vary. To test
our approach we thus experimented with seven scenarios covering
interesting combinations of inputs summarized in Table 1. We var-
ied our input in terms of the tagging level, i.e., the number of tagged
commits, the number of features, and the number of variants. The
scenarios were identified by two authors of the paper.

Scenarios including the highest number of tagged commits are
assumed to be the best input for our approach, as they provide the
most detailed tagging level (S5). Scenarios with many tags provide
detailed tagging with most tags only affecting a single feature, e.g.,
a change is clearly attributed to a particular feature. However, there
could still be a few commits affecting multiple features. S7, for
instance, has 34 tagged commits out of which 25 affect only a single
feature. This is assumed to be an average input for our approach
(S1, S2, S3, S6). Scenarios that include few tags only contain high-
level tagging involving multiple features, which is assumed to be
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the worst-case input for our approach (S4, S7). Our preliminary
evaluation started with six features, resulting in 31 variants that
had to be checked and analyzed. The mandatory feature Base was
present in every variant. We then reduced the number of features
by merging selected features. For instance, scenario S2 was created
by combining the dependent features Traffic and Weather, while
scenario S3 was created by combining the independent features
Traffic and Rss.

For evaluation, we checked out different variants from the gen-
erated repository. To generate the Java code from ECCO we used a
Java plugin developed by Hinterreiter et al. [13]. We used ECCO’s
default plugins for other artifact types. This means that the XML
and JSON files were parsed using the default plugins provided by
ECCO. Each variant was then checked for correctness.

We distinguished five correctness levels (CLs) for the automati-
cally composed variants:

CL5 - Correct. In this case, the composed variant compiles and
behaves as expected. This was determined by executing the most
important test cases of the application.

CL4 - With Surplus. This correctness level means that the system
variant compiles and behaves as expected, but only after removing
surplus code. This code is added to the variant by ECCO, if a code
artifact is mapped to more than one feature, meaning that the
input was too ambiguous to automatically compute precise feature
mappings.

CL3 - With Runtime Errors. This case is similar to CL4, i.e., the
system variant compiles and starts after removing surplus code.
However, runtime errors are detected during execution, which
require further debugging.

CL2 - With Compilation Errors. This level means that although the
checked-out variant contains the required source code, compilation
fails even after removing surplus code.

CL1 - Without Feature Separation. In this case source code re-
quired for the variant is missing and/or features could not be dis-
tinguished based on the input. Hence, the variant contains feature
code which should not be included based on its configuration.

6 RESULTS

We discuss our results and findings for RQ1 (correctness) and RQ2
(performance).

6.1 ROQ1. Correctness

We checked out all possible 129 variants with the latest feature
revisions and examined the automatically composed code. The
findings are summarized in Figure 5, which shows the number of
variants for the different correctness levels for each of the seven
scenarios.

Number of tags vs produced variants. All scenarios result in at least
one variant at CL5, i.e., the variant containing all features. This is an
extensional case, as the version containing all features was explicitly
committed in all scenarios, and ECCO could correctly re-compose
these cases, as expected and also discussed in other domains [11].
All other variants of the investigated scenarios are intensional cases
that were never committed as such to the repository. Overall, 13/31
of the variants of S1 and S5, 9/15 of the variants of S2, 7/15 of the
variants of S3 and 2/3 of the variants of S6 are at CL4 or higher.
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Figure 5: Number of variants for the different correctness
levels (CLs) for all seven scenarios. The characteristics of the
scenarios are shown in Table 1.

Moreover, none of these scenarios produced variants at CL1. The
scenarios with few tags produce variants either at CL1 or CL5,
where the CL5 variant is always the one with all features. Since
there are so few tags, ECCO is not able to distinguish between the
features and always returns the entire code base in these cases. In
S4, for example, every variant consists of the same code, resulting in
one (extensional) CL5 variant and 30 CL1 variants with no feature
separation at all.

The most surprising results were found for scenario S5, for which
we added most tags and therefore expected the most accurate vari-
ants and many variants at CL4 and CL5. However, there is no
difference to S1 when only looking at the correctness levels. When
inspecting the different variants of S5, we saw that the produced
variants reduced the amount of wrongly added code and S5 is bet-
ter and worse at the same time compared to S1. For example, the
surplus code from S1 was reduced by 41% (from 51 to 31 LOC) for
the feature Traffic and by 91% (from 857 to 74 LOC) for the feature
Weather. This shows that increasing the tags (from 34 to 48) while
reducing the number of tags affecting multiple features increases
the quality of the feature-to-code mappings. On the other hand, the
required code for the feature Traffic in variants missing the Weather
feature was reduced by 4% (from 161 to 154 LOC), meaning that
the already broken code got even worse. This also shows that tags
affecting multiple features negatively influenced the quality of the
feature-to-code mappings. However, these changes had no effect
on the correctness level, since the following three main problems
still persisted for those variants:

Variants with surplus code. ReSeRVe in some cases generates
surplus code not needed for a variant, which results in compilation
errors. This happened when the underlying variation control system
ECCO could not distinguish features completely, which is caused
by tagged commits referencing multiple features. In our application
this happened to the features Base, Traffic and Weather due to some
Git commits referring to some of these features together. Therefore,
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this problem occured in every variant missing either the feature
Weather or the feature Traffic. This is the case for 23/31 of the
variants of S1 and S5, 6/15 of the variants of S2 and 11/15 of the
variants of S3. However, these errors can simply be fixed by deleting
the surplus code as we will discuss later.

Improper feature interaction. In this case, shared code affected
by multiple features is missing. This means that complete classes
or certain methods have not been generated while the code still
compiles without errors. For instance, in our application the config-
uration file was empty, which led to runtime instead of compilation
errors. This was caused by the Rss feature, as every variant not
including this feature is missing the shared code. This is the case for
19/31 variants of S1 and S5, 5/15 of S2, and 7/15 of S3. Interestingly,
the cause of this problem is not a Git commit affecting multiple
features in this case because the Rss feature is always referenced in
a single Git commit.

Lack of information for mapping features. The third problem
deals with compilation errors in required source code, i.e., code
required for features is composed incorrectly. This happens when
the variation control systems cannot correctly distinguish between
features, which is caused by commits and tags affecting multiple
features. As already mentioned, this happened for the features
Base, Traffic, and Weather. This problem only occurs in variants
which contain the Traffic but not the feature Weather, meaning
that Traffic depends on Weather. However, the problem does not
exist in variants containing the feature Weather but not the feature
Traffic. This problem was found in 8/31 variants of S1 and S5 as
well as 4/15 variants of S3. Due to the dependency of the features
Traffic and Weather we combined them in S2. Contrary to that, we
combined the features Traffic and RSS in S3 because they seemed to
be independent of each other. By combining dependent features,
the correctness of the variants increased, especially in CL4 (from
3/15 to 5/15) and CL3 (from 4/15 to 6/15). Further, there is not a
single variant with CL2 or lower when comparing S3 and S2.

As expected, scenarios with very few tags, such as S4 and S7,
provided no useful results, since every variant consisted of exactly
the same code, meaning that ECCO could not distinguish the fea-
tures due to the ambiguous input. Hence, only the variant with all
features is at CL5, while all others are at CL1.

6.2 RQ2.Performance

All measurements were performed on a Dell XPS 15 9560 with
16 GB RAM, an Intel Core i7 7700HQ @ 2.8 GHz with 4 physical
and 8 logical cores running Windows 10. The results are shown in
Figure 6. Computing the feature evolution graph takes only a few
milliseconds, even when using the highest number of tags (48), and
thus can be neglected. Generating the ECCO repository requires
more time. We focus on the core of our approach and thus measured
the time it takes for ECCO to process the checked-out versions,
but excluded the time it takes to check out the versions from the
annotated version history. The results show that the execution time
for generating the ECCO repository increases with the number of
tags. The execution time also significantly depends on the amount
of data that is committed to ECCO. In our scenarios, the average is
42 files per commit. The time ranges from 2 to 15 seconds, which
indicates sufficient performance for practical workflows. Similar
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Figure 6: Execution times for computing the ECCO reposi-
tory for the seven evaluation scenarios.

commit times are reported in evaluations using ECCO for a larger
number of features in the context of a large-scale industrial system
[13] and in the domain of music engraving [11].

7 DISCUSSION

Impact of Lower Correctness Levels. We provided a detailed discus-
sion of correctness levels for different variants. It is worth discussing
the impact of different CLs for practical engineering. While CL5 is
obviously the ideal case, also lower levels can often be easily fixed
without disrupting the engineering workflow. The reason for lower
levels is that ECCO never analyzed a specific variant, and thus prob-
lems may occur for certain features that never co-existed before.
However, the workflow in ECCO in such cases is to remove the sur-
plus code or to fix the syntax errors in the checked-out variant and
then commit the corrected variant, thereby allowing the variation
control system to distinguish certain features in future checkouts.
Over time, this iterative process improves the mappings of features
to code elements, thereby increasing the level of correctness.

Developer Discipline. The discipline of developers when commit-
ting features to the original repository has a strong impact on the
quality of the results. Obviously, if a tag covers multiple features,
they can sometimes not be distinguished by ECCO. In the ideal
case, a commit only affects a single feature, which then allows very
detailed tagging, thereby increasing correctness. The effect can be
clearly seen when looking at the results of scenarios S4 and S7
where all variants, except the ones with all features, are useless
because they always contain the entire code.

Iteratively Finding the Right Level of Detail. As can be seen in the
results for RQ1, it is not necessary to tag all commits. Given that
adding or modifying tags is straightforward and the performance is
acceptable, an engineer could start by adding tags for major releases
and then add more tags when needed. ReSeRVe would then replay
the revised annotated version history to re-create a repository.
This can also include splitting and merging features. Afterwards,
the required variants can be checked out and tested. This can be
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repeated until the result matches the expectations. Similarly, the
engineer can also experiment with different feature granularities.

Optimizations of Artifact Types. Our approach relies on plugins
for the different kinds of artifacts (e.g., Java code, XML files, text
files, etc.), which allow the variation control system to correctly
compute the feature-to-artifact mappings. Using artifact adapters
vastly improves the correctness of the results, as the successful
composition of Java code shows. For example, our MagicMirror ap-
plication also includes JSON and XML files for which we did not
use a specific adapter but ECCO’s standard text adapter, which
certainly leaves some room for improvement.

Usage Scenarios. Our approach can be extended to support incre-
mental replays from Git to update an ECCO repository, which can
then be primarily used for product configuration. Another usage
scenario is to replace Git with ECCO, which may be less likely, how-
ever, due to manifold dependencies on Git in many environments.

Threats to Validity. Our evaluation is based on a small Java system.
We identified six features (including the base feature) for our study.
However, we still had to manually check each individual composed
variant for the selected scenarios, resulting in 129 variants in total.
Given this complexity, we argue that the MagicMirror application
and repository is acceptable for the purpose of our initial evaluation.
It consists of about 2100 lines of Java code and provides an evolution
history of 100 Git commits. Additionally, the Java code uses the
SpringBoot Framework, meaning that more library functionality is
used. Also, our test application consists of static resources as well
as project configuration files in different formats like JSON and
XML, thereby also demonstrating the feasibility of the approach
for artifact types other than code.

The correctness of the results also depends on the correctness
of the mappings between the features and the code. In our current
implementation, these mappings are computed by the variation
control system ECCO, which could influence the results. However,
the correctness of the mappings computed during ECCO commits
has been evaluated already in earlier research [17].

A threat to internal validity is that we could not evaluate the split
command due to limitations of our dataset. As explained, ECCO
needs more commits to distinguish features after using the split
command and our Git history did not provide sufficient data to
experiment with this operation.

8 RELATED WORK

Casquina and Montecchi [6] highlight the need of integrating vari-
ability mechanisms and version control systems. They propose an
approach for organizing the implementation of SPL features in
branches. In order to keep the SPL consistent, any feature change
(Git commit) is propagated to other branches, thereby resolving
product and down conflicts. The approach was inspired by the work
of Hellebrand et al. [12], which follows a similar idea of feature
branching for dealing with variability in version control systems.
Our approach differs from this research in two points: We organize
the source code in the variation control system ECCO to optimize
variability management; and we use a lightweight tagging strategy
to aid the identification of commonalities and variability compared
to these studies.

Michael Ratzenbock, Paul Griinbacher, Wesley Klewerton Guez Assuncao, Alexander Egyed, and Lukas Linsbauer

Variation control systems, such as SuperMod and ECCO, manage
revisions and variants of different types of product line artifacts [18].
SuperMod [27] integrates temporal and logical versioning, allowing
the development of SPLs in a single-version workspace in a step-by-
step manner by using update and commit operations. ECCO [10, 17]
can be extended with plugins translating artifacts into its internal
tree structure. Plugins have been created for different languages.
For instance, Hinterreiter et al. [13] use the variation control system
ECCO to manage mappings between features and their implemen-
tation in the DSL IEC 61131-3. Similarly, Griinbacher et al. [11]
use features managed in ECCO to support the evolution of digital
music artifacts encoded in the domain-specific language LilyPond.
We selected ECCO for the purpose of this study as we are highly
familiar with it and because it provides plugins needed to analyze
the code artifacts of the MagicMirror system.

Some studies use version control systems as a source of infor-
mation for dealing with SPLs. Michelon et al. [22, 23] propose an
approach to track feature revisions to their implementation in vari-
ants that evolved independently of each other. This is done by
analyzing preprocessor annotations in the source code to auto-
matically determine features and their evolution both in terms of
space (features being added or removed) and time (feature revi-
sions). Montalvillo et al. [24] propose a solution for reducing SPL
development overhead by following the grow-and-prune model for
quickly delivering products. They introduce “peering bars” as vi-
sual indicators to make engineers aware of features being upgraded
in different product branches. This work aids the coordination
among SPL engineers. Our refactoring approach migrates SPLs to
intensional version control systems, which reduces some potential
coordination problems pointed out by these authors.

ReSeRVe uses annotated evolution histories for creating soft-
ware versions via a variation control system. These annotations
can be added manually or automatically. Liebig et al. [14] present
an approach to analyze the variability of software systems based on
preprocessor annotations, e.g., #ifdef. Moreover, they defined a
set of metrics for measuring variability. Based on this work, Liebig
et al. [15] present a variability-aware refactoring approach for sys-
tems using conditional compilation, which aims at preserving the
behavior of all variants of a system and interacts with existing
refactoring engines.

Loesch and Ploedereder [19, 20] propose an approach for reorga-
nizing software product lines by analyzing product configurations
using formal concept analysis. For instance, they determine fea-
tures not in use anymore, appearing in pairs, or features used in all
variants. Based on these categories, their tool-supported approach
then suggests features that should be removed, merged, or marked
as alternative when used mutually exclusive.

Vierhauser et al. [28] describe an approach for incremental con-
sistency checking on variability models, which also checks the
consistency with the underlying code base of the product line. Our
approach aims to ensure consistency by replaying a version history
and re-creating a feature model on the fly based on annotations
instead of fine-grained consistency checking.

Biirdek et al. [5] present an approach that analyzes the differ-
ences of feature models by computing the changes as complex
edit operations on feature diagrams. The approach can also reason
about the semantic impact of diagram changes. This work could
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complement our approach for product lines with different versions
of feature models, as it would assist an engineer in determining
feature-level change operations.

Our refactoring approach supports reactive and extractive migra-
tion to SPLs [1]. Differently, Bittner et al. [4] proposed a proactive
approach in which the traceability of features to source code are
obtained during software development via feature trace recording.
This is complementary to our work, especially when the proactive
adoption of SPLs is an option.

9 CONCLUSIONS AND FUTURE WORK

Extracting information about features and feature-to-code map-
pings is a problem of high importance in practice, given the large
number of legacy systems and software without explicit feature and
variant management. This paper presented the ReSeRVe approach
that tags an evolution history of an existing product line (e.g., a Git
repository) with feature-level operations. ReSeRVe then replays the
evolution history and generates a repository of the variation control
system ECCO. The approach is useful for both refactoring product
lines or migrating existing systems to a product line approach as
the tagged commits directly modify the feature model. When using
the approach, developers only have to maintain a single repository,
as the ECCO repository is generated automatically and can then
be used to compose different product variants. While our evalua-
tion is still preliminary it demonstrates the feasibility and potential
of the approach. However, more studies are needed for different
types of systems and for longer evolution histories to demonstrate
the practical applicability and scalability of the approach in more
realistic settings.

The ReSeRVe tool can also be combined with a feature mining
technique, such as the approach presented by Michelon et al. [23].
In this case a repository could first be tagged automatically. After
this, an engineer can further update the generated feature model
via additional tags and replay its version history to generate a varia-
tion control system. Furthermore, the approach would benefit from
integrating code analysis techniques to lift code-level dependencies
to the level of features, as shown by Feichtinger et al. [9]. ReSeRVe
could also be triggered as part of a build step or in a DevOps envi-
ronment to automatically assess checked-out selected variants and
to report if they compile successfully and if key tests pass.
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